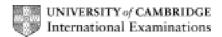
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/31


Paper 31, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

EITHER: State or imply non-modular inequality $(2-3x)^2 < (x-3)^2$, or corresponding equation, 1

and make a reasonable solution attempt at a 3-term quadratic

M1

Obtain critical value
$$x = -\frac{1}{2}$$

A1

Obtain
$$x > -\frac{1}{2}$$

A1

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

A1

OR1: State the relevant critical linear equation, i.e.
$$2 - 3x = 3 - x$$

B1

Obtain critical value
$$x = -\frac{1}{2}$$

B1

Obtain
$$x > -\frac{1}{2}$$

OR2:

*OR*3:

B1

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

Β1

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

B2

Obtain the critical value
$$x = -\frac{1}{2}$$
 by inspection, or by solving a linear inequality

B1

Obtain
$$x > -\frac{1}{2}$$

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

B1

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

B1

Make recognisable sketches of
$$y = 2 - 3x$$
 and $y = |x - 3|$ on a single diagram Obtain critical value $x = -\frac{1}{2}$

B1

Obtain
$$x > -\frac{1}{2}$$

B1

Fully justify
$$x > -\frac{1}{2}$$
 as only answer

Β1

A1

[4]

[Condone \geq for > in the third mark but not the fourth.]

- EITHER: Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} 2 M1
 - Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 1)^2}$
 - Use correct method for solving $3^{\pm x} = a$ for x, where a > 0M1Obtain answer x = 0.107A1
 - State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{x_n} + 9)}{\ln 2} 2$ OR: B1

Use the formula correctly at least once M1 Obtain answer x = 0.107A1

Show that the equation has no other root but 0.107 **A**1 [4]

[For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.]

3 (i) Use the iterative formula correctly at least once

M1

State final answer 2.78

A1

Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in an appropriate function in (2.775, 2.785)

A1

[3]

(ii) State a suitable equation, e.g. $x = \frac{3}{4}x + \frac{15}{x^3}$

B1

State that the exact value of α is $\sqrt[4]{60}$, or equivalent

B1 [2]

	Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Pape	r
			GCE A/AS LEVEL – October/November 2009	9709	31	
4	Use product or quotient rule Obtain derivative in any correct form Equate derivative to zero and obtain an equation of the form $a \sin 2x = b$, or a quadratic in tan $\sin^2 x$, or $\cos^2 x$ Carry out correct method for finding one angle Obtain answer, e.g. 0.365		M1 A1 1x, M1* M1(dep*)			
	Obt [Ign	ain second nore answer	answer 1.206 and no others in the range (allow 1.21) as outside the given range.] in degrees, 20.9° and 69.1°, as a misread.]		A1	[6]
5	(i)	EITHER:	Use double angle formulae correctly to express LHS in terms of 2θ Use trig formulae correctly to express LHS in terms of sin two terms	_	M1	
			Obtain expression in any correct form in terms of $\sin \theta$		A1	
			Obtain given answer correctly		A 1	
		OR:	Use double angle formulae correctly to express RHS in ter	rms of trig function		
			of 2θ		M1	
			Use trig formulae correctly to express RHS in terms of co		M1	
			Obtain expression in any correct form in terms of $\cos 4\theta$ and	and $\cos 2\theta$	A1	F 43
			Obtain given answer correctly		A1	[4]
	(ii)		finite integral $\frac{1}{4} \sin 4\theta - \frac{4}{2} \sin 2\theta + 3\theta$, or equivalent		B2	
		,	if there is just one incorrect term)		3.61	
			s correctly, having attempted to use the identity		M1	
		Obtain an	swer $\frac{1}{32}(2\pi - \sqrt{3})$, or any simplified exact equivalent		A1	[4]
6	(i)	EITHER:	State that the position vector of M is $2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, or equiva	lent	B1	
v	(1)	EIIIIEK.	Carry out a correct method for finding the position vector		M1	
			Obtain answer $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, or equivalent Obtain vector equation of MN in any correct form,	V11	A1	
			e.g. $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 3\mathbf{k})$		A1	
		OR:	State that the position vector of M is $2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, or equiva	lent	B1	
			Carry out a correct method for finding a direction vector f	for MN	M1	
			Obtain answer, e.g. $\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$, or equivalent		A 1	
			Obtain vector equation of MN in any correct form,			
			e.g. $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 3\mathbf{k})$	/	A1	[4]
			[SR: The use of $AN = AC/3$ can earn M1A0, but $AN = AC/3$	2 gets M0A0.]		
	(ii)	_	ation of BC in any correct form, e.g. $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \mu(\mathbf{i} - \mathbf{j})$	$5\mathbf{j} + 5\mathbf{k}$	B1	
		Solve for	•		M1	
			rrect value of λ , or μ , e.g. $\lambda = 3$, or $\mu = 2$ sition vector $5\mathbf{i} - 8\mathbf{j} + 7\mathbf{k}$		A1 A1	[4]
		ootain po	Sidon vocioi di oj i /k		AI	[ד]
7	(i)	Substitute	x = -2 + i in the equation and attempt expansion of $(-2 + i)$	3	M1	
,	(1)		1 = -2 + 1 in the equation and attempt expansion of $(-2 + 1)$ correctly at least once and solve for k	,	M1	
		Obtain $k =$			A1	[3]
		Journ K -	20		111	

B1

[1]

(ii) State that the other complex root is -2 - i

Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2009	9709	31	
(iii)	Obtain m	odulus $\sqrt{5}$		B1	
	Obtain ar	gument 153.4° or 2.68 radians		B1	[2
(iv)		nt representing u in relatively correct position in an Argand	diagram	B1	
	Show ver	tical line through $z = 1$		B1	
	Show the	correct half-lines from u of gradient zero and 1		B1	
		relevant region		B1	[4
		parts (i) and (ii) allow the following alternative method:			-
		the other complex root is $-2 - i$		B1	
		dratic factor $x^2 + 4x + 5$		B1	
		bic by 3-term quadratic, equate remainder to zero and solve	for k or using	Dī	
			fior k, or, using	N/1	
		adratic, factorise cubic and obtain k		M1	
	Obtain k	= 20		A1]	
		4 P C			
(i)	State or in	mply partial fractions are of the form $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{3x+1}$		B1	
		W - (W - 1)	_	M1	
		elevant method to obtain a constant			
		e of the values $A = 1$, $B = 2$, $C = -3$		A1	
		second value		A1	_
	Obtain th	e third value		A 1	[
(ii)	Use corre	ct method to obtain the first two terms of the expansion of ($(x+1)^{-1}, (x+1)^{-2}, (x+1)^{-2}$	$(3x+2)^{-1}$	
()	or $(1 + \frac{3}{2})$			M1	
	2			1111	
		rrect unsimplified expansion up to the term in x^2 of each particle.	rtial		
	C				
	fraction		$A1\sqrt{+}A1\sqrt{-}$	+ A1√	
		swer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{9}x^2$, or equivalent	$A1\sqrt{+A1}\sqrt{-A1}$	+ A1√ A1	[:
	Obtain an	swer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{8}x^2$, or equivalent		A1	[:
	Obtain an	swer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{8}x^2$, or equivalent e binomial coefficients, e.g. $\begin{pmatrix} -1\\1 \end{pmatrix}$, are not sufficient for the		A1	
	Obtain an		first M1. The f.t. i	A1	
	Obtain an [Symbolic The form	binomial coefficients, e.g. $\begin{pmatrix} -1\\1 \end{pmatrix}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1, E=3, C=-3$, is acceptable	first M1. The f.t. i	A1	
	Obtain an [Symbolic The form B1M1A1]	binomial coefficients, e.g. $\begin{pmatrix} -1\\1 \end{pmatrix}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1, E=3, C=-3$, is acceptable A1A1.	first M1. The f.t. i	A1 is on A , B ,	, <i>C</i> .]
	Obtain an [Symbolic The form B1M1A1 In part (ii	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. It give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for	first M1. The f.t. i	A1 is on A , B ,	, <i>C</i> .;
	Obtain an [Symbolic The form B1M1A1 In part (ii for the firm the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2} + \frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. O give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.]	first M1. The f.t. in the f.t. in part (i) give for multiplying out it	A1 is on A , B , fully and A	, <i>C</i> .
	Obtain an [Symbolic The form B1M1A1 In part (ii for the fir [If B or C	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. It give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for	first M1. The f.t. in the f.t. in part (i) give for multiplying out it	A1 is on A , B , fully and A	, <i>C</i> .
	Obtain an [Symbolic The form B1M1A1 In part (ii for the fir [If <i>B</i> or <i>C</i> 4/10]	binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2} + \frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. In give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.] omitted from the form of fractions, give B0M1A0A0A0 in	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. in the first M1. The f.t. is the first M1. T	A1 is on A, B, fully and A (ii), max	A1
	[Symbolic of the first of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2} + \frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. O give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.]	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. in the first M1. The f.t. is the first M1. T	A1 is on A, B, fully and A (ii), max	A1
	[Symbolic of the firm of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1, E=3, C=-3$, is acceptable A1A1. O give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.] omitted from the form of fractions, give B0M1A0A0A0 in comitted from the form of fractions, give B0M1A0A0A0 in	first M1. The f.t. in the first M1. The f.t. is the first M1. The f.t. in the first M1. The f	A1 fs on A, B, fully and A (ii), max	A1
	[Symbolic of the form of the firm of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. in the first M1. The f.t. is the first M1. The f.t. in the first M1. The f	A1 fs on A, B, fully and A (ii), max	A1
	[Symbolic of the first of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. In give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer. If omitted from the form of fractions, give B0M1A0A0A0 in the set of an attempt to expand $(5x+3)(x+1)^{-2}(3x+2)^{-1}$, give belying out fully, and A1 for the final answer.]	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1A1 $\sqrt{A1}\sqrt{A1}$ in M1A1A1 for the expression of the first M1. The f.t. is the first M1A1A1 for the expression of the first M1A1A1A1 for the expression of the first M1A1A1A1A1 for the expression of the first M1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A	A1 as on A, B, fully and A a (ii), max a (ii), max expansions,	A1
	[Symbolic of the first of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. In give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer. If omitted from the form of fractions, give B0M1A0A0A0 in the set of an attempt to expand $(5x+3)(x+1)^{-2}(3x+2)^{-1}$, give belying out fully, and A1 for the final answer.]	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1A1 $\sqrt{A1}\sqrt{A1}$ in M1A1A1 for the expression of the first M1. The f.t. is the first M1A1A1 for the expression of the first M1A1A1A1 for the expression of the first M1A1A1A1A1 for the expression of the first M1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A	A1 as on A, B, fully and A a (ii), max a (ii), max expansions,	A1
	[Symbolic of the form of the firm of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 as on A, B, fully and A (ii), max (iii), max expansions, and	A1
	[Symbolic of the form of the firm of the f	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. In give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer. If omitted from the form of fractions, give B0M1A0A0A0 in the set of an attempt to expand $(5x+3)(x+1)^{-2}(3x+2)^{-1}$, give belying out fully, and A1 for the final answer.]	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 as on A, B, fully and A (ii), max (iii), max expansions, and	A1
	Obtain an [Symbolic IThe form B1M1A1 In part (ii for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1, E=3, C=-3$, is acceptable A1A1. O give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 as on A, B, fully and A (ii), max (iii), max expansions, and d).]	, <i>C</i> .
(i)	Obtain an [Symbolic IThe form B1M1A1 In part (ii for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 as on A, B, fully and A (ii), max (iii), max expansions, and	, <i>C</i> .j
	Obtain an [Symbolic In Figure 1] [Symbolic In Figure 2] [Symbolic In part (ii) for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$] State coordinates of the symbolic In the cafor multip [Allow us $f'(0) = -1$]	to binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. In give M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 as on A, B, fully and A (ii), max (iii), max expansions, and d).]	, <i>C</i> .j
	Obtain an [Symbolic IThe form B1M1A1 In part (ii for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$ State coord.	to binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.] omitted from the form of fractions, give B0M1A0A0A0 in comitted from the form of fractions, give B0M1A0A0A0 in see of an attempt to expand $(5x+3)(x+1)^{-2}(3x+2)^{-1}$, give belying out fully, and A1 for the final answer.] the of Maclaurin, giving M1A1 $\sqrt{1}$ for differentiating and of $\frac{1}{4}$, A1 $\sqrt{1}$ for f "(0) = $\frac{29}{4}$, and A1 for the final answer (the f.t. redinates (1, 0) oct quotient or product rule	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 fs on A, B, fully and A (ii), max (ii), max (xpansions, and d).] B1 M1	, <i>C</i> .
	Obtain an [Symbolic IThe form B1M1A1 In part (ii for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$ State coord Use corresponding to the content of the corresponding to th	binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}\sqrt{A1}$	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 fs on A, B, fully and A (ii), max (iii), max (xpansions, and d).] B1 M1 A1	A1
	Obtain an [Symbolic IThe form B1M1A1 In part (iii for the fir [If B or C 4/10] [If D or E 4/10] [In the cafor multip [Allow us $f'(0) = -1$ State coord Use corresponding to the coord Use corresponding to the coord Equate described by the coord of the coord	to binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the $\frac{Dx+E}{(x+1)^2}+\frac{C}{3x+2}$, where $D=1$, $E=3$, $C=-3$, is acceptable A1A1. Ogive M1A1 $\sqrt{1}$ for the expansions, and, if $DE \neq 0$, M1 for all answer.] omitted from the form of fractions, give B0M1A0A0A0 in comitted from the form of fractions, give B0M1A0A0A0 in see of an attempt to expand $(5x+3)(x+1)^{-2}(3x+2)^{-1}$, give belying out fully, and A1 for the final answer.] the of Maclaurin, giving M1A1 $\sqrt{1}$ for differentiating and of $\frac{1}{4}$, A1 $\sqrt{1}$ for f "(0) = $\frac{29}{4}$, and A1 for the final answer (the f.t. redinates (1, 0) oct quotient or product rule	first M1. The f.t. is the first M1. The f.t. is the first M1. The f.t. is the first M1 and \mathbf{i} in \mathbf{i} in M1 and \mathbf{i} in \mathbf	A1 fs on A, B, fully and A (ii), max (ii), max (xpansions, and d).] B1 M1	, <i>C</i> .j

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

- (iii) Attempt integration by parts reaching $a\sqrt{x} \ln x \pm a \int \sqrt{x} \frac{1}{x} dx$
- M1*

Obtain $2\sqrt{x} \ln x - 2 \int \frac{1}{\sqrt{x}} dx$

A1

Integrate and obtain $2\sqrt{x} \ln x - 4\sqrt{x}$

M1(dep*)

Use limits x = 1 and x = 4 correctly, having integrated twice Justify the given answer

A1 [5]

10 (i) State or imply $\frac{dA}{dt} = kV$

M1*

A1

Obtain equation in r and $\frac{dr}{dt}$, e.g. $8\pi r \frac{dr}{dt} = k \frac{4}{3} \pi r^3$

Use $\frac{dr}{dt} = 2$, r = 5 to evaluate k

M1(dep*)

[4]

Obtain given answer

A1 M1

(ii) Separate variables correctly and integrate both sides

A1 + A1

- Obtain terms $-\frac{1}{r}$ and 0.08t, or equivalent
- Evaluate a constant or use limits t = 0, r = 5 with a solution containing terms of the form
- $\frac{a}{r}$ and bt

M1

Obtain solution $r = \frac{5}{(1 - 0.4t)}$, or equivalent

A1 [5]

(iii) State the set of values $0 \le t < 2.5$, or equivalent [Allow t < 2.5 and 0 < t < 2.5 to earn B1.]

B1 [1]